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A Fast Signature Computation Algorithm for LFSR
and MISR

Bin-Hong Lin, Shao-Hui Shieh, and Cheng-Wen Wu, Senior Member, IEEE

Abstract—A multiple-input signature register (MISR) com-
putation algorithm for fast signature simulation is proposed.
Based on the table look-up linear compaction algorithm and the
modularity property of a single-input signature register (SISR),
some new accelerating schemes—partial-input look-up tables and
flying-state look-up tables—are developed to boost the signature
computation speed. Mathematical analysis and simulation results
show that this algorithm has an order of magnitude speedup
without extra memory requirement compared with the original
linear compaction algorithm. Though this algorithm is derived
for SISR, a simple conversion scheme exists that can convert in-
ternal-EXOR MISR to SISR. Consequently, fast MISR signature
computation can be done.

Index Terms—Built-in self-test, fault simulation, LFSR, logic
testing, MISR, signature analysis.

I. INTRODUCTION

PSEUDORANDOM pattern based built-in self-test (BIST)
has been a very popular test methodology for VLSI circuits

due to its simplicity and effectiveness [1], [2]. Associated with
the scan technique using internal flip-flops (FFs), BIST is con-
sidered one of the most powerful schemes for fault detection
and classification. A general BIST configuration, as shown in
Fig. 1, is composed of a pattern generator (PG), a signature an-
alyzer (SA), and the circuit under test (CUT). During the BIST
mode, test patterns from the PG are applied to the CUT for de-
tecting possible faults, and the CUTs outputs are logged in the
SA in a compressed form called thesignature, which is then
compared with that of a fault-free circuit to determine the CUTs
correctness.Aliasing is said to exist if a faulty CUTs signature
is the same as that of the fault-free circuit, though their output
sequences are different.

An effective BIST design should have high fault coverage
and low aliasing probability. Fault coverage evaluation is nor-
mally done by fault simulation, which estimates the percentage
of all the faults considered that can be detected by the test pat-
terns generated by the PG, assuming that we can observe the
CUT outputs directly. In the BIST environment, however, we
do not read the CUT outputs directly. Instead, we compress the
outputs and read the final signature from the SA for compar-
ison. Therefore, in addition to the fault coverage, the evalua-
tion of the aliasing probability also is required. Aliasing prob-
ability estimation is usually done by probabilistic analysis [1],
[3], based on assumptions that may not be realistic, such as uni-
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Fig. 1. A general BIST configuration.

form distribution of the faulty-output sequences, equal likeli-
hood of the error patterns, and the application of all patterns
from the PG. Moreover, a deviation of the actual design from
the standard linear-feedback-shift-register (LFSR) implementa-
tion or a change in the input patterns (e.g., weighted patterns,
multi-seeded patterns, embedded patterns, etc.) greatly compli-
cates the analysis, and it is very difficult, if possible at all, to de-
velop a design aid using this approach. An alternative practical
approach isBIST simulation, which is a combination of fault
simulation and signature computation. The research on fault
simulation is relatively mature (see, e.g., [4]–[16]), and only
combinational fault simulation is required for BIST simulation.
On the other hand, the sequential nature of the SA makes the sig-
nature computation a much more time-consuming process and is
the bottleneck of the BIST simulation [17], [18], i.e., fast BIST
simulation relies on fast signature computation. In addition to
aliasing prediction, finding the good signature of the circuit it-
self is also very important for the design and test engineers. Pre-
vious works extend the bit-by-bit (sequential) signature compu-
tation into multiple time-frame (multiple bit) computation to re-
duce the computation time [17], [19], [20]. Their basic idea is
to decompose the state sequence into several independent subse-
quences, and then process the individual subsequences via state
look-up tables (LUTs) for fast evaluation, followed by super-po-
sitioning of the results of individual responses with the input se-
quence. In their methods, the time-consuming sequential com-
putation of the signature is replaced by table look-up operations,
which can be done several bits at a time. A parallel algorithm
based on a multi-processor environment was later developed to
speed up the LFSR signature computation [21]. The major draw-
back of the parallel approach is the resource and communication
overhead. Recently, in [22], a generallinear compaction algo-
rithm using superposition on the partial results of both the input
partitions and state partitions by two individual sets of LUTs
was proposed and shown to outperform the previous ones in
speed. However, further speedup of the approach is limited by
the excessive use of memory.

In this paper, we propose several speedup techniques for
LFSR signature computation. Based on the modulus property
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Fig. 2. A typical MISR configuration.

of the single-input signature register (SISR) or multiple-input
signature register (MISR), we propose two partial-input LUT
methods. The first uses the memory-driven approach to gain
a certain speedup with less memory requirement as compared
with the linear compaction algorithm. The second uses the
timing-driven approach to gain a higher speedup with the
same memory requirement as the linear compaction algorithm.
Significant speedup can be achieved by exploring the sparsity
of the error-domain inputs, i.e., long runs of contiguous zeros in
the error syndromes from the CUT. The idea is to skip long runs
of zeros in the error-domain input sequence in one iteration.
Operating on the error-domain inputs, our flying-state LUT
method can significantly reduce the signature computation
time with an appropriate stride. However, the speedup of the
method may be small if the stride is not properly selected.
Consequently, a modification of the flying-state method using
the pivot-checking (PC) technique is proposed to guarantee
the speedup irrespective of the stride. Since the sparsity of
the error-domain inputs depends on the faults of the CUT, we
finally propose a dynamic pivot-checking (DPC) technique,
which may stretch the pivot length dynamically according to
the sparsity. It improves significantly the speedup in a general
situation. As a result, our signature computation algorithm
using the memory-driven approach and the (dynamic) PC
technique is fast and economical in terms of memory space.
Mathematical analysis and simulation results on ISCAS85
benchmark circuits show that, with the same memory require-
ment, this algorithm has an order of magnitude speedup over
the linear compaction algorithm.

The rest of the paper is organized as follows. In Section II, we
briefly review the linear compaction algorithm. We propose sev-
eral improved MISR simulation algorithms in Section III, fol-
lowed by their complexity analysis in Section IV. Experimental
results are presented and discussed in Section V. Finally, Sec-
tion VI concludes this work.

II. PRELIMINARIES

Figure 2 shows a typical MISR configuration—the in-
ternal-EXOR MISR (IE-MISR). In the figure, denotes the
length of the MISR, i.e., the number of FFs in the register.
Also, are the binary coefficients of the
characteristic polynomial of the MISR, i.e.,

(1)

Let be the content of the-th FF, then the state of the MISR
(i.e., the sequence ) can be represented by the
state polynomial

(2)

Similarly, an -bit input sequence can be rep-
resented by the input polynomial.

(3)

Thesignatureobtained by any SISR or MISR is defined as the
final state of the register after the input sequence has been
entered into the register. Consider an IE-SISR with a character-
istic polynomial . The signature obtained after the input bit
stream ( ) is entered can be represented as [2]

(4)

i.e., the signature is equivalent to the remainder taken from
the division of by . Equation (4) generally pro-
vides an easy way for signature computation and aliasing
probability analysis. Since an IE-MISR can be reduced to an
equivalent SISR, it is a widely used technique to simulate a
MISR by its corresponding SISR form. Parallel simulation for
external-EXOR signature registers can be found in [21].

To reduce memory requirement during signature computa-
tion, the state and input polynomials can be partitioned into sub-
polynomials of equal length [22]. Specifically, for the-bit state
polynomial, we let

(5)

where

(6)

is the -th partition (with length ) of the state polynomial, as-
suming is a multiple of . Similarly, the -bit input sequence

can be partitioned into-bit subpolynomials, i.e.,

(7)

where

(8)

is the -th partition of the input polynomial and is assumed
to be a multiple of .

Consider a linear compactor with initial state polynomial
. Let represent the state polynomial after an

-bit input polynomial is entered, i.e.,

(9)

where denotes the operator which shifts the-bit input se-
quence into a linear compactor of length. Also, let

Authorized licensed use limited to: Chin-Yi University of Technology. Downloaded on October 29, 2008 at 07:40 from IEEE Xplore.  Restrictions apply.



LIN et al.: A FAST SIGNATURE COMPUTATION ALGORITHM FOR LFSR AND MISR 1033

and be the input and au-
tonomous responses, respectively. In [22], it is shown that

(10)

where is the autonomous response of the-th state
subpolynomial when we assume the input polynomial is a zero
polynomial, and is the input response of theth input
subpolynomial when we assume the initial state is a zero state,
i.e.,

(11)

and

(12)

The autonomous response is the contribution of the
current state to the state time-frames from now, and the input
response is the contribution of the incoming -bit
input sequence to the state time-frames from now. For an

-bit input sequence, the final state of the linear compactor
can be evaluated by iteratively applying the preceding procedure

times. Note that the polynomial additions/subtractions
in this paper are all modulo-2 additions/subtractions.

III. FAST MISR SIMULATION ALGORITHM

In this section we will present several novel approaches to
speeding up the linear compaction algorithm, and then propose a
fast MISR simulation algorithm. The approaches and techniques
will be described in detail in the following subsections.

A. Memory-Driven Partial-Input-LUT Approach

An IE-SISR with all-zero initial state can be viewed as a poly-
nomial divider or modulus evaluator [23], [2], i.e., the state of
the SISR obtained after the application of the input sequence

can be written as , where
is the characteristic polynomial of the SISR. Let denote
the degree of a given polynomial. We know that
if . We can use the modulus evalua-
tion property of the IE-SISR to boost the signature computation
speed in two different ways.

We first consider the contribution of an incoming-bit input
sequence in each iteration, and write the input response as

(13)

Let be the maximum integer such that
, i.e., , then, according to (12),

we have

(14)

(15)

Fig. 3. The original linear compaction algorithm.

Fig. 4. The memory-driven partial-input LUT scheme.

...

(16)

Consequently, the input response of (13) is simply

no table look-up/construction required

(17)

Generally, we have . In each iteration, the contri-
bution of the last input partitions
(each of which has a degree less than ) is the direct input
subsequence without any computation. This memory-driven
scheme benefits the signature computation in both the compu-
tation speed and memory requirement.

The speedup can be delineated by Figs. 3 and 4. In the original
linear compaction scheme as shown in Fig. 3 [22], each nonzero
input partition , is used as the key to the
input LUTs to obtain the input contribution . On the
other hand, in our memory-driven partial-input LUT scheme as
shown in Fig. 4, only a portion of the nonzero input partitions
[i.e., those with degrees higher than ] need table references.
This reduces the number of table look-ups as well as XOR op-
erations for the trailing input sequences with degrees no more
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than . Therefore, it increases the speed of the linear
compaction algorithm.

Since table references are eliminated for those input partitions
with degrees less than , the memory storage for the
input LUTs is, therefore, reduced from to

-bit words.
This memory-driven approach is especially useful for a long

MISR with , where is the degree of each
input sequence partition. In such a case, the input look-up op-
erations are completely eliminated, so a better performance im-
provement can be observed.

B. Timing-Driven Input-LUT Approach

Speedup also can be achieved if we apply the modulus evalua-
tion property of the SISR to the linear compaction algorithm in
another way. The memory-driven partial-input-LUT approach
presented above reduces the number of table look-ups, while the
timing-driven input-LUT approach to be presented next reduces
the number of iterations. The idea is to retire more input bits (in-
creasing from to bits) in each iteration, thus reducing
the number of iterations. For an input sequence (represented by

) of bits, the signature after each iteration is

(18)

where is the least significant part of the input polynomial
with degree less than , and ,
i.e., represents a sequence of bits with trailing
zero bits.

By (18), we use the input LUTs for the input bits
(with trailing zero bits), i.e., our algorithm can virtually retire

bits in one iteration without requiring extra memory. This
approach outperforms the linear compaction algorithm in that
the number of iterations is reduced from to

for an input sequence of bits in total, at the cost of only
an extra EXOR operation for in each iteration. The table
look-ups for also are eliminated since its degree is less
than .

Generally, this approach gains higher speedup than the
memory-driven approach discussed above, especially for a

dense (nonsparse) input sequence. For a sparse input sequence
(i.e., an input sequence with a high percentage of zero seg-
ments), the linear compaction algorithm can skip input table
look-up operations due to the null effect of the zero partitions. It
reduces the computation time of the input contribution just like
the direct substitution of the least significant input subsequence
in the memory-driven approach—the memory-driven approach
thus has a fair speedup under such a situation. On the other
hand, the speedup of the timing-driven approach mainly results
from the reduction of the number of iterations, so the speedup
is pattern independent and guaranteed.

C. Error-Domain Flying-State-LUT Approach

Speedup techniques also can be developed from the explo-
ration of theerror-domain inputs. The error-domain inputs are
obtained by taking the EXOR of the inputs from the fault-free
circuit and the CUT. Let be a positive integer that denotes the
stride. For a zero input sequence of bits in length, the sig-
nature is the autonomous response, i.e.,

(19)

By checking the zero-runs of length in the input sequence,
we can jump directly to the signatures of the -bit input subse-
quences later. Starting from , the signature can
be obtained by state look-ups using a set of extra LUTs con-
taining states bits ahead, which is called theflying-state
LUTs. Note that the number of input bits processed in each
iteration is times that in the linear compaction algorithm,
and the computation of the intermediate states from
to is dropped. A high speedup can be expected if
there is a high percentage of -bit zero input runs.

In BIST simulation, what we usually care is the difference be-
tween the CUT signature and the fault-free one, not the signature
itself (unless a dictionary is to be constructed for diagnosis). Let
the error-domain inputs to the MISR be

(20)

where and are the output sequences of the CUT
and the fault-free circuit, respectively. Generally, a circuit
may contain many untestable faults and hard-to-detect faults.
Therefore, in pseudorandom-pattern based BIST, is
usually sparse, i.e., it usually contains only a very small
percentage of nonzero bits. Let denote the probability that
an input partition is nonzero. It is clear that by using
can be greatly reduced as compared with that of . Table
I shows the comparison of among the bigger ISCAS-85
benchmark circuits. In this experiment, 8-bit partitions and
single stuck-at faults were assumed, and 10 000 pseudorandom
patterns were simulated for each fault. From the table, we see
that a significant reduction of is observed if we switch from

to , especially for large circuits.
Now let the error-domain signature of the MISR be

(21)
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TABLE I
COMPARISON OF THE PROBABILITY OF

NONZEROPARTITIONS BETWEEN I(x) AND I (x)

where and are the signatures of the CUT and
the fault-free circuit, respectively. Then, we have

(22)

This shows how can be obtained from the . Note
that can easily be obtained from any fault simulator. Based
on our observation from Table I and (22) for , we propose
the flying-state LUT approaches that take advantage of the ob-
servation. They are discussed in the following subsections.

D. Backward Zero-Checking Flying-State-LUT Approach

To effectively utilize the flying-state scheme, the input se-
quence has to satisfy the following two conditions: 1) the input
sequence must be sparse; 2) there is an efficient method to iden-
tifying the -bit zero runs. We have shown previously that
the error-domain inputs meet the first condition. For the second
condition, we propose abackward zero-checking(BZC) tech-
nique. The idea is to find the last nonzero partition of the input
sequence as soon as possible (if there is one) to minimize the
zero-partition checking overhead, and to reserve the maximal
runs of contiguous zeros for the next iteration to take full advan-
tage of the zero runs. The procedure starts by reading an-bit
input sequence and storing it clockwise in a circular queue of

bits, with theHeadpointer pointing to the starting posi-
tion and theTail pointer to the ending position of the input se-
quence, as shown in Fig. 5. We use theDonepointer to track
the last partition to be checked—it points initially toHead. The
Startpointer is associated with the first partition to be checked,
and it points initially toTail. The BZC procedure is summarized
in Fig. 6.

In each iteration, the partitions fromStart to Done are
checked backward, i.e., counterclockwise, for zero partitions.
Then, BZC updatesHead, Tail, Start, andDoneaccording to
Fig. 6. During the backward checking process, if no nonzero
partition is located, thenHead will be equal toDone in the
next iteration. However, if a nonzero partition is found, then
Head will be less thanDone in the next iteration. There are
two reasons for doing it this way: 1) the checking time will
be greatly reduced in the next iteration; 2) the partitions from
Headto Donewill be all zero partitions. Note thatTail always

Fig. 5. Backward zero-checking procedure for an input sequence of length
nm—initial condition or after flying-state operation.

Fig. 6. The backward-zero-checking (BZC) algorithm.

points to the last input partition in the queue so that we know
the starting location for the next input sequence. Also,Head
always points to the first of the input partitions being processed
in the current iteration, andStart points to the st
partition after it.

If no nonzero partition betweenStartandDoneis identified,
then the final state is obtained by (19), i.e., the flying-state ap-
proach. This greatly reduces the number of table look-ups as
compared with the linear compaction algorithm. After that, we
updateHead, Tail, Start, and Done for the next iteration as
shown in Fig. 6.

If, on the other hand, a nonzero partition is found, say par-
tition Hit, during the backward checking process, thenHit will
be the last nonzero partition counting fromHead(since the zero
checking process is done backward towardDone), and we can
locate it with minimal effort. The input sequence fromHead
to Hit will have to be processed by the-bit mode operation.
Under such circumstances, there are two different cases (due to
the different outcomes in the previous iteration) to be consid-
ered.

The first case is when a nonzero partition was found in the
previous iteration. In such case,Doneis located afterHead, and
the partitions fromHeadto Donehave been checked and known
to be zeros during the previous iteration. Then, we can evaluate
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Fig. 7. Backward zero-checking procedure for an input sequence ofnm bits,
with nonzero partitions.

the state of partitionHit by the autonomous response of the cur-
rent state fromHeadto Done and the -bit mode operation
(using the memory-driven approach) fromDone to Hit. After
that, the pointers are updated for the next iteration. The parti-
tions fromHeadto Doneare now all zero, and need no checking
in the next iteration. This situation is illustrated in Fig. 7.

The second case is when no nonzero partition is found in the
previous iteration. In this case,Doneis equal toHead, and the
last nonzero partition of the -bit input sequence afterHead
is Hit. We then have to evaluate the contribution of the parti-
tions fromHeadto Hit by the -bit mode operation (using the
memory-driven approach), and update the pointers afterwards.
Again, after updating the pointers, the partitions fromHeadto
Doneare all zero and need no checking in the next iteration.

The advantages of our BZC technique can be summarized as
follows.

1) It provides efficient checking of the -bit nonzero input
sequence. The backward checking procedure can identify
the maximal length of nonzero input sequence beginning
at Head by checking only one nonzero partition, even
if there are more than one nonzero partitions in the se-
quence. This greatly reduces the checking effort as com-
pared with forward checking of all the nonzero partitions.

2) For a nonzero input sequence, the longest train of zero
partitions fromHit to Tail is reserved for later flying-state
operation, if possible.

3) Since we only need to check the input partitions from
Start to Done, which in most cases is only a small por-
tion of the -bit input sequence, the checking effort is
greatly reduced.

4) It provides adaptive flying-state operation, and makes
good use of -bit zero runs even if they are not read in
the same -bit iteration.

The BZC technique can capture most runs of-bit zeros in
the input sequence with little effort. By using the error-domain
inputs, the flying-state technique with BZC results in a very high
computation speed. The storage overhead of the BZC technique
includes the flying-state LUTs of -bit words and the
input queue of bits.

E. PC Flying-State-LUT Approach

Though the BZC technique can efficiently utilize the zero
runs of the error-domain input sequence, there are situations
when BZC is not very effective. With BZC, a fixed stride of

is selected. It seems that a longer stride will result in a faster
computation. However, if the stride is too long, say is
much larger than , it is then hard to find such a long run
of contiguous zeros. This will degrade the performance. As a
result, its speedup is dependent on the stride.

We now present a simple extension to the BZC technique
whose performance is not dependent on the stride. Consider an

-bit input sequence with leading zero partitions. The
signature obtained after this input sequence is

(23)

It can be seen that the signature computation in fact starts from
the first nonzero partition (partition in this case), i.e., the first

table look-ups are eliminated.
The PC approach is based on this concept. Let thepivot be

the leading partitions of the current -bit input sequence.
The PC technique checks if the pivot is zero by using the BZC
algorithm. For a zero pivot, the signature is calculated by the
flying-state operation as given in (23). Otherwise, the normal

-bit mode operation is performed from the first to the last
nonzero partitions in the pivot, which are identified by using
the BZC procedure on the pivot, i.e.,Startalways points to the

th partition afterHead. In BZC, an -bit input sequence is
guaranteed to be retired in at most two iterations, hence the input
queue is at most -bit long. However, only partitions of the

-bit input sequence are guaranteed to be retired in two suc-
cessive iterations for PC, so an adaptive input procedure should
be used which takes into account the available space in the input
queue. One simple method that simplifies the fault simulator
procedure is to keep an input queue of bits in length as
in BZC—read a new -bit input sequence if there is enough
space, otherwise go to the next iteration.

The advantage of PC over BZC lies in its robustness, i.e., it is
also good for input sequences which are nonsparse. Under such
circumstances, PC can still gain speedup with a shorter pivot.
This releases the strong dependence on the stride as in BZC.
The choice of the pivot length is determined by the speedup,
overhead, and input sparsity. In fact, BZC can be considered as
a special case of PC with .

F. DPC Flying-State-LUT Approach

For a highly sparse input sequence, a long pivot is desired.
On the other hand, for a not-so sparse input sequence, a shorter
pivot should be used. Since the sparsity of the input sequence
depends on the faults, we propose a dynamic (adaptive) scheme
which can stretch the pivot according to the sparsity of the error-
domain input sequence. It is called the DPC approach. Letbe
the pivot length. In the beginning, . During the
signature computation process, if a zero pivot is detected, then

if
otherwise

(24)
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If the pivot is nonzero, then

if
otherwise

(25)

G. Fast Signature Computation Algorithm

Our fast signature computation algorithm results from the
preceding speedup approaches. Keeping the memory require-
ment as small as the linear compaction algorithm, our signa-
ture computation algorithm operates on the error-domain inputs

. The algorithm is a combination of the memory-driven
approach and the flying-state approach with BZC (for practical
cases, DPC also can be used).

Although the discussion has been made on the IE-SISR, ap-
plying our algorithm to a MISR can be done by at least the fol-
lowing two different ways.

1) Convert the MISR into an equivalent IE-SISR and then
apply our algorithm to the SISR to obtain the signature
[17], [24].

2) Run our algorithm for each nonzero connection of the
MISR and then combine the individual signatures ac-
cording to the location of the nonzero connection to the
MISR.

IV. COMPLEXITY ANALYSIS

A. Memory Complexity

The memory space requirement of our algorithm includes the
input LUTs, state LUTs, flying-state LUTs, and input queue,
with their memory sizes denoted as , , , and

, respectively. For BZC, the memory sizes in terms of
-bit words are, respectively,

(26)

(27)

(28)

(29)

Using the memory-driven approach, can be reduced by
. Consequently, the total memory space of our algorithm

is

(30)

Typically, . Neglecting the small overhead of , this
algorithm requires the same memory space as the linear com-
paction algorithm [22], i.e., .

B. Time Complexity

The BZC technique uses dynamic framing for determining
the maximum runs of zero partitions. Let denote the prob-
ability that a -bit input partition is nonzero, and denote
the probability that an-bit state partition is nonzero. For every

-bit input polynomial in each iteration, the time complexity
of our algorithm, including the LUT operation time and the BZC
operation time, is calculated as follows.

1) LUT operation time:

a) Non-flying-state operation:
If there is a nonzero partitionHit, since the parti-
tions fromHead to Donehave been checked and
known to be zero in the BZC process, only au-
tonomous responses are accumulated during this
interval. The memory-driven operations are exe-
cuted fromDoneto Hit, and the time required is

Done Head Hit Done

(31)

where

(32)

is the time for autonomous response accumulation
in the memory-driven approach, and

(33)

Note that and represent the average time
required to perform a table look-up and a logical
operation, respectively, represents the av-
erage time to check if a subpolynomial is zero, and

is the word length. In general,
.

b) Flying-state operation:
If consecutive zero partitions are found,
then we perform the flying-state operation on this

-bit input sequence. The operation time is

(34)

2) BZC operation time:

a) Non-flying-state operation:
The time for the consecutive nonzero partitions is
that spent during the checking process fromDone
to Headin the preceding iteration, i.e.,

Done Head
(35)

b) Flying-state operation:
In this case, consecutive zero partitions in
the input queue have been checked, and

(36)

Let be the probability that the -bit input polynomial is
zero. Assume the input partitions are statistically independent,
then

(37)
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In each iteration, the probability that the algorithm operates in
the flying-state mode is . Consequently, the total iteration time
is

(38)

where

Head Done Hit Tail (39)

The total iteration time is affected by the three random pointers,
which may differ from iteration to iteration. Statistically, the
mean (expectation) of the total iteration time is

Done Head

Hit Done

(40)

Let Head Tail be the number of partitions to be pro-
cessed in an iteration, then . AssumeDoneis uni-
formly distributed betweenHead and Tail, then we have the
probability

Done Head (41)

for all . Obviously the mean is Done
Head . Now let Tail Done. By (39),

. Also

Hit Done (42)

and

(43)

Therefore, we obtain

(44)

If it is a flying-state iteration, bits are processed, else the
partitions fromHeadto Hit are processed. On the average, the
number of bits processed in each iteration is

(45)

TABLE II
COMPARISON OFMEMORY COMPLEXITY AND TIME COMPLEXITY FOR THE

INPUT SEQUENCEI(x)

TABLE III
COMPARISON OFMEMORY COMPLEXITY AND TIME COMPLEXITY FOR THE

ERROR-DOMAIN INPUT SEQUENCEI (x)

For an -bit input sequence, the average total time thus is

(46)

It can be seen that a significant speedup can be achieved when
we use the error-domain inputs.

V. EXPERIMENTAL RESULTS

We use a 32-bit LFSR with characteristic polynomial
in our simulations [22]. The ISCAS-85 benchmark

circuits are used as the functional circuits under test, and the
fault model assumed is the single stuck-at fault. For each fault,
10 000 random patterns are applied. For ease of discussion, the
results shown below were taken from the sequence of the first
primary output of each functional circuit. The results are similar
if we pick a random primary output. We also assume that
32, 8, and 8. All the experiments were done on a SUN
Sparc-20/71 workstation with 256 M-byte of RAM. The time
was measured inticks (a tick is 1/60 s), and the memory space
was measured in 32-bit words.

Tables II and III list the experimental results for the orig-
inal inputs and error-domain inputs , respectively.
Both the memory-driven and timing-driven approaches were
simulated. Improvement can be observed for both approaches as
compared with the linear compaction algorithm [22]. Note that
there is no performance improvement for the memory-driven
approach on the error-domain inputs (though memory space is
reduced by half). This is because for the error-domain inputs
the linear compaction algorithm also neglects as many table
look-ups (for the zero input partitions) due to small, so the
check time for each partition is approximately that for the as-
signment operation on the partition in the memory-driven ap-
proach. From the tables, we can see that the timing-driven ap-
proach is faster than the memory-driven approach, especially for
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TABLE IV
COMPUTATION TIME OF THE BZC PROCEDURE OVER ARANGE OFn (STRIDE)

TABLE V
COMPUTATION TIME OF THE PC PROCEDURE OVER ARANGE OFP (PIVOT

LENGTH), ASSUMINGn = 30

the error-domain inputs. Also, it is input-pattern independent as
expected.

Table IV lists the computation time (in terms of ticks) of our
algorithm over a range of stride. Compared with that of the
linear compaction algorithm shown in Table II, a great reduc-
tion in computation time can be seen—the speedup ranges from
about 5 to 20 for . It is interesting to note that the
speedup tends to saturate (and even decay) for large. This is
because 1) the check time dominates when is very
small if we use and the BZC technique, and 2) the spar-
sity of has been exploited. The memory requirement is the
same as the linear compaction algorithm.

Table V shows the computation time for a range of(pivot
length) when we use the PC technique, assuming . From
the table, we can see that the performance is very dependent on
the value of . A larger means more intermediate states will
be removed when we detect a zero pivot. Consequently, for a
sparse input sequence, a largeshould be used. For a sparse
input sequence and a fixed, PC is about as good as BZC if

.

VI. CONCLUSION

We have proposed several approaches to improving the
LFSR/MISR signature computation performance. Based on the
table look-up linear compaction algorithm and the modularity
property of SISR, new accelerating schemes—partial input
look-up tables and flying-state look-up tables—have been de-
veloped to boost the signature computation speed. We proposed
two partial-input LUT methods—the memory-driven approach
and the timing-driven approach. Significant speedup also has
been observed when we explore the sparsity of the error-domain
inputs. Operating on the error-domain inputs, the flying-state
LUT method can significantly reduce the signature compu-
tation time with an appropriate stride which can be kept by
using the DPC technique. Our signature computation algorithm
using the memory-driven approach and the DPC technique is

fast and requires small memory space. Mathematical analysis
and simulation results on ISCAS85 benchmark circuits showed
that, with the same memory requirement, this algorithm has
an order of magnitude speedup over the linear compaction
algorithm on the average. Although this algorithm was derived
for SISR, a simple method exists that converts MISR to SISR.
Consequently, fast MISR signature computation can be done.
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