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A Fast Signature Computation Algorithm for LFSR
and MISR

Bin-Hong Lin, Shao-Hui Shieh, and Cheng-Wen V&enior Member, IEEE

Abstract—A multiple-input signature register (MISR) com-
putation algorithm for fast signature simulation is proposed. >
Based on the table look-up linear compaction algorithm and the P
modularity property of a single-input signature register (SISR), .
some new accelerating schemes—partial-input look-up tables and Gl
flying-state look-up tables—are developed to boost the signature I
computation speed. Mathematical analysis and simulation results
show that this algorithm has an order of magnitude speedup
without extra memory requirement compared with the original Fig. 1.
linear compaction algorithm. Though this algorithm is derived
for SISR, a simple conversion scheme exists that can convert in-
ternal-EXOR MISR to SISR. Consequently, fast MISR signature  form distribution of the faulty-output sequences, equal likeli-
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A general BIST configuration.

computation can be done. hood of the error patterns, and the application of all patterns
Index Terms—Built-in self-test, fault simulation, LFSR, logic ~from the PG. Moreover, a deviation of the actual design from
testing, MISR, signature analysis. the standard linear-feedback-shift-register (LFSR) implementa-

tion or a change in the input patterns (e.g., weighted patterns,

|. INTRODUCTION multi-seeded patterns, embedded patterns, etc.) greatly compli-

o cates the analysis, and it is very difficult, if possible at all, to de-
SEUDORANDOM pattern based built-in self-test (BIST),e|op a design aid using this approach. An alternative practical

has been a very popular test methodology for VLSI circuitgoproach isBIST simulationwhich is a combination of fault

due to its simplicity and effectiveness [1], [2]. Associated witQjmy|ation and signature computation. The research on fault
the scan technique using internal flip-flops (FFs), BIST is corjmylation is relatively mature (see, e.g., [4]-[16]), and only
sidered one of the most powerful schemes for fault detectigBmpinational fault simulation is required for BIST simulation.
and classification. A general BIST configuration, as shown i@, the other hand, the sequential nature of the SA makes the sig-
Fig. 1, is composed of a pattern generator (PG), a signature ggture computation a much more time-consuming process and is
alyzer (SA), and the circuit under test (CUT). During the BISThe pottleneck of the BIST simulation [17], [18], i.e., fast BIST
mode, test patterns from the PG are applied to the CUT for dgmyation relies on fast signature computation. In addition to
tecting possible faults, and the CUTs outputs are logged in thgasing prediction, finding the good signature of the circuit it-
SA in a compressed form called tisegnature which is then setjs also very important for the design and test engineers. Pre-
compared with that of a fault-free circuit to determine the CUTgq s works extend the bit-by-bit (sequential) signature compu-
correctnessAliasingis said to exist if a faulty CUTS signatureation into multiple time-frame (multiple bit) computation to re-
is the same as that of the fault-free circuit, though their outpy{,ce the computation time [17], [19], [20]. Their basic idea is
sequences are different. . to decompose the state sequence into several independent subse-

An effective BIST design should have high fault coveragg,ences, and then process the individual subsequences via state
and low aliasing probability. Fault coverage evaluation is NOf5ok-up tables (LUTS) for fast evaluation, followed by super-po-
mally done by fault simulation, which estimates the percentaggjoning of the results of individual responses with the input se-
of all the faults considered that can be detected by the test Rittence. In their methods, the time-consuming sequential com-
terns generated by the PG, assuming that we can observegfition of the signature is replaced by table look-up operations,
CUT outputs directly. In the BIST environment, however, Wghich can be done several bits at a time. A parallel algorithm
do not read the CUT outputs directly. Instead, we compress {igsed on a multi-processor environment was later developed to
outputs and read the final signature from the SA for compagpeed up the LFSR signature computation [21]. The major draw-
ison. Therefore, in addition to the fault coverage, the evalugack of the parallel approach is the resource and communication
tion of the aliasing probability also is required. Aliasing probgyerhead. Recently, in [22], a genelialear compaction algo-
ability estimation is usually done by probabilistic analysis [1}ithm using superposition on the partial results of both the input
[3], based on assumptions that may not be realistic, such as Wrtitions and state partitions by two individual sets of LUTs

was proposed and shown to outperform the previous ones in
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L Iy Let r; be the content of théth FF, then the state of the MISR

IO ISl
i ﬁ (i.e., the sequencey,r1,...,7s_1) can be represented by the
ﬂ ® ® o o o state polynomial
1 -
é @g é S(x) = Ts_lxs_l + -+ 7T+ 70 (2)
A A A A

An IE type MISR

Similarly, anm-bit input sequencé, i, . .., 4,1 can be rep-
resented by the input polynomial.

! . ) . I(z) = im—lwmi1 + -+ uzr (3
Fig. 2. A typical MISR configuration.

Thesignatureobtained by any SISR or MISR is defined as the
'&nal state of the register after the input sequehce has been
ntered into the register. Consider an IE-SISR with a character-
éSiHC polynomialC(z). The signature obtained after the input bit
ggam {(x)) is entered can be represented as [2]

of the single-input signature register (SISR) or muItipIe-ian
signature register (MISR), we propose two partial-input LU
methods. The first uses the memory-driven approach to g
a certain speedup with less memory requirement as compa?
with the linear compaction algorithm. The second uses the S(x) = I(z)mod C(x) @)
timing-driven approach to gain a higher speedup with the

same memory requirement as the linear compaction algorithing., the signature is equivalent to the remainder taken from
Significant speedup can be achieved by exploring the sparding division of I(z) by C(z). Equation (4) generally pro-

of the error-domain inputs, i.e., long runs of contiguous zerosWwdes an easy way for signature computation and aliasing
the error syndromes from the CUT. The idea is to skip long rupsgobability analysis. Since an IE-MISR can be reduced to an
of zeros in the error-domain input sequence in one iteratiggfuivalent SISR, it is a widely used technique to simulate a
Operating on the error-domain inputs, our flying-state LUMISR by its corresponding SISR form. Parallel simulation for
method can significantly reduce the signature computatiexternal-EXOR signature registers can be found in [21].

time with an appropriate stride. However, the speedup of theTo reduce memory requirement during signature computa-
method may be small if the stride is not properly selectetion, the state and input polynomials can be partitioned into sub-
Consequently, a modification of the flying-state method usingplynomials of equal length [22]. Specifically, for thebit state

the pivot-checking (PC) technique is proposed to guaranteelynomial, we let

the speedup irrespective of the stride. Since the sparsity of s

the error-domain inputs depends on the faults of the CUT, we .

finally propose a dynamic pivot-checking (DPC) technique, Sz) = ZSS“‘J’ (=) ()
which may stretch the pivot length dynamically according to =t

the sparsity. It improves significantly the speedup in a genemhere

situation. As a result, our signature computation algorithm

using the memory-driven approach and the (dynamic) PC Ssta,; (¥) = o (j1)i-1%
technique is fast and economical in terms of memory space. (6)
Mathematical analysis and simulation results on ISCAS85
benchmark circuits show that, with the same memory requiljg—
ment, this algorithm has an order of magnitude speedup O%Vn
the linear compaction algorithm. z)

UL gt

the j-th partition (with length) of the state polynomial, as-
ings is a multiple ofi. Similarly, them-bit input sequence
can be partitioned int@-bit subpolynomials, i.e.,

The rest of the paper is organized as follows. In Section II, we =
briefly review the linear compaction algorithm. We propose sev- I(z) = Z Linp, (%) (7
eral improved MISR simulation algorithms in Section lI, fol- i=1
lowed by their complexity analysis in Section IV. Experimentavlvhere
results are presented and discussed in Section V. Finally, Sec-
tion VI concludes this work. Linp. () = im_(i_l)k_ﬂm*@*l)k*l doe g™
(8)
[l. PRELIMINARIES is thei-th partition of the input polynomial ane: is assumed

to be a multiple of.

Figure 2 shows a typical MISR configuration—the in- Consider a linear compactor with initial state polynomial
ternal-EXOR MISR (IE-MISR). In the figures denotes the So(x). Let S+ (z) re resent the state pol nomisl gfter an
length of the MISR, i.e., the number of FFs in the register.} /" P oy

Also, Cy,C4,...,Cs; 1 are the binary coefficients of them'b'tInIOUt polynomiall(z) is entered, i.e.,
characteristic polynomial of the MISR, i.e., St () = I(x) S So(x) (9)

wheregS denotes the operator which shifts thebit input se-
Clz)=2"+Cy 13"t +--- + Crz + Co. (1) quence into a linear compactor of lengthAlso, let S} =

np
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I(x) r;>,s 0 andsST™ = 0 >> SO( ) be the input and au- Input look-up tables

auto —

tonomous responses, respectively. In [22], it is shown that me-bit
Input sequence

§4(@) = ST ) @ S

auto mp

S s @ZS:I;" (10)
=1

where S (z) is the autonomous response of tih state

auto;

subpolynomlal when we assume the input polynomial is a zero
polynomial, and5‘+m( ) is the input response of thh input

mp

subpolynomial When we assume the initial state is a zero state s+t
. state sequence —]
€., State look-up tables
stm 0% s 11
auto; (2) =0 > Sga, () (11) Fig. 3. The original linear compaction algorithm.
and
m,s c 1 y
S]—i—lgj ( JZ) — Iinpz- > 0. (12) Partial input look-up tables
m-bit
The autonomous responsg.” (z) is the contribution of the Ioput sequence 1
————" o, Q-D
3

current state to the state time- frames from now, and the input  fomcur
responsesjlg’(a:) is the contribution of the incoming.-bit —
input sequence to the state time-frames from now. For an

M -bit input sequence, the final state of the linear compactor D

can be evaluated by iteratively applying the preceding procedur:
[ M/m] times. Note that the polynomial additions/subtractions

in this paper are all modulo-2 additions/subtractions.

D partitions need . —
no table look-ups ,——

I1l. FAST MISR SMULATION ALGORITHM

| I— |
In this section we will present several novel approaches tc State Iook-up tables
speeding up the linear compaction algorithm, and then propose a
fast MISR simulation algorithm. The approaches and techniquég 4. The memory-driven partial-input LUT scheme.
will be described in detail in the following subsections.

A. Memory-Driven Partial-Input-LUT Approach

+m .
An IE-SISR with all-zero initial state can be viewed as a poly- npm_pyg (z) = Ium D1 (). (16)
nomial divider or modulus evaluator [23], [2], i.e., the state O

the SISR obtained after the application of the input Sequenégnsequently the input response of (13) is simply

I(x) can be written as$'(z) = I(z)mod C(z), whereC(z) SE () = ST (B @ @ ST (2)®
is the characteristic polynomial of the SISR. ldetz() denote mp P mPg-D
the degree of a given polynomial. We know ti$tr) = I(x) Lipon oy @ ® Linp e (€)- 17)

-

if deg(I(x)) < deg(C(z)). We can use the modulus evalua-
tion property of the IE-SISR to boost the signature computation

Speed _in two di_fferent ways. _ . Generally, we havé) = |s/k]. In each iteration, the contri-
We first consider the contribution of an incomingbitinput ) 11 of the lastD input partitionsliuy,, . . 1s-- -+ Linp,.,

sequence in each iteration, and write the input response as (each of which has a degree less thié(rzr)) is the direct input

no table look-up/construction required

Let D be the maximum integer such thidg(/

m subsequence without any computation. This memory-driven

S (g Z Sitm(z scheme benefits the signature computation in both the compu-
o P tation speed and memory requirement.

:1;71 ()@ & Slz;rlm (). (13) The speedup can be delineated by Figs. 3and 4. In the original

linear compaction scheme as shown in Fig. 3 [22], each honzero

) input partition/i,, (), 1 < ¢ < m/k, is used as the key to the
lnp(m/k) D+1

deg(C(a)), i.e.,deg(C(x)) > kD — 1, then, according to (12), input LUTs to obtain the input contnbuuoﬁf;’j’( ). On the

we have

other hand, in our memory-driven partial-input LUT scheme as

shown in Fig. 4, only a portion of the nonzero input partitions
Slflglm (%) = linpw () (14) [i.e., those with degrees higher th@iiz)] need table references.
o * This reduces the number of table look-ups as well as XOR op-
Slnpm 1(97) = Iln1>m_1(“7) (15)  erations for the trailing input sequences with degrees no more
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thandeg(C(x)). Therefore, it increases the speed of the lineaense (nonsparse) input sequence. For a sparse input sequence
compaction algorithm. (i.e., an input sequence with a high percentage of zero seg-

Since table references are eliminated for those input partitioments), the linear compaction algorithm can skip input table
with degrees less thateg(C(x)), the memory storage for the look-up operations due to the null effect of the zero partitions. It
input LUTs is, therefore, reduced frofm/k)2* to ((m/k) — reduces the computation time of the input contribution just like
D)2F s-bit words. the direct substitution of the least significant input subsequence

This memory-driven approach is especially useful for a lorig the memory-driven approach—the memory-driven approach
MISR with deg(C(x)) ~ m, wherem is the degree of eachthus has a fair speedup under such a situation. On the other
input sequence partition. In such a case, the input look-up dgnd, the speedup of the timing-driven approach mainly results
erations are completely eliminated, so a better performance ifrem the reduction of the number of iterations, so the speedup
provement can be observed. is pattern independent and guaranteed.

B. Timing_Driven |nput_|_UT Approach C. Error-Domain FIyIng-State-LUT Approach

Speedup also can be achieved if we apply the modulus evalua>P€edup techniques also can be developed from the explo-
tion property of the SISR to the linear compaction algorithm jftion of theerror-domain inputsThe error-domain inputs are
another way. The memory-driven partial-input-LUT approac‘Plbta'_ned by taking the EXOR of t.h_e |r_1puts from the fault-free
presented above reduces the number of table look-ups, while $if&uit and the CUT. Let be a positive integer that denotes the
timing-driven input-LUT approach to be presented next reducg§ide For a zero input sequence oin bits in length, the sig-
the number of iterations. The idea is to retire more input bits (iR&ture is the autonomous response, i.e.,
creasing fromn to m + s bits) in each iteration, thus reducing
i

the number of iterations. For an input sequence (represented by SHm(z) = 0 s () Z
r) = olx) =

s

ST gy, (19)

I(z)) of m + s bits, the signature after each iteration is - auto;
i=
By checking the zero-runs of lengthn in the input sequence,
SHm+D) () = <](x) (m;)’s 0) @ <0 (m;;)’s 50($)> we can jump directly to the signatures of #he-bit input subse-
quences later. Starting froy(x), the signatures*"™(x) can
. (mHs),s be obtained by state look-ups using a set of extra LUTs con-
o <(Is(x) ®In(z)) > 0) taining statesym bits ahead, which is called tHying-state
(mA4s),s LUTs Note that the number of input bits processed in each
b <0 > SO(x)) iteration isn times that in the linear compaction algorithm,
(mts),s and the computation of the intermediate states fi$hi*(z)
=IL(z)® <Im(x) > 0) to ST(»=1m () is dropped. A high speedup can be expected if
there is a high percentage wofn-bit zero input runs.
@ <0 (m;)’s 50($)> In BIST simulation, what we usually care is the difference be-
tween the CUT signature and the fault-free one, not the signature
[5E] itself (unless a dictionary is to be constructed for diagnosis). Let
=Lma Y SErt() the error-domain inputs to the MISR be
=31
7 Ie(x) = cut(x) D I(x) (20)
&> SHe () (18)
=1 ’ wherel.,(xz) andI(x) are the output sequences of the CUT

and the fault-free circuit, respectively. Generally, a circuit

wherel;(z) is the least significant part of the input polynomiamay contain many untestable faults and hard-to-detect faults.
with degree less thadeg(C(x)), andl,,(z) = I(z) & I,(x), Therefore, in pseudorandom-pattern based BI&Tx) is
i.e., I,,(x) represents a sequenceraf+ s bits with s trailing  usually sparse, i.e., it usually contains only a very small
zero bits. percentage of nonzero bits. Lgt denote the probability that

By (18), we use the input LUTs for thex + s input bits an input partition is nonzero. It is clear that by usihgz), p;
(with s trailing zero bits), i.e., our algorithm can virtually retirecan be greatly reduced as compared with that(ef). Table
m + s bits in one iteration without requiring extra memory. Thi$ shows the comparison qf; among the bigger ISCAS-85
approach outperforms the linear compaction algorithm in thaenchmark circuits. In this experiment, 8-bit partitions and
the number of iterations is reduced frdm//m| to [M/(s + single stuck-at faults were assumed, and 10 000 pseudorandom
m)] for an input sequence @ bits in total, at the cost of only patterns were simulated for each fault. From the table, we see
an extra EXOR operation faf, () in each iteration. The table that a significant reduction of; is observed if we switch from
look-ups forl,(x) also are eliminated since its degree is lesEx) to I.(x), especially for large circuits.

thandeg(C(x)). Now let the error-domain signature of the MISR be
Generally, this approach gains higher speedup than the
memory-driven approach discussed above, especially for a Stm(x) = ST (z) & ST (x) (21)
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TABLE | Taﬂ
COMPARISON OF THE PROBABILITY OF Start
NONZERO PARTITIONS BETWEEN I () AND I..(x)
Circuit | p;(I(z)) | pi({e(z)) | Faults Backward
c1355 | 0.9908 | 0.0211 1574 checking

c1908 | 0.9914 | 0.0088 | 1879
¢2670 | 0.9942 | 0.0007 | 2747
c3540 | 0.5493 | 0.0034 | 3428
¢5315 | 0.9946 | 0.0007 | 5350
c6288 | 0.8904 | 0.0009 | 7744
c7552 | 0.9950 | 0.0003 | 7550

Done
Head /
cut

the fault-free circuit, respectively. Then, we have Fig. 5. Backward zero-checking procedure for an input sequence of length
nm—initial condition or after flying-state operation.
SHm(x) = 5+m( )@ 5+m($)

cut

whereSI(z) andS*T™(x) are the signatures of the CUT and

- (( (@) S 0) ® (0 X S ))) BZC( ) /* Initially, Done = Head; Start = Tail; */
{
P (( >> ()) P (() >> Sof ))) if (no nonzero partition found from Start to Done) {

flying state_mode_from Head to_Tail();

_ ( ( ) ( )) e > 0 Head = Tail + 1; Done = Head,

cut s readinput_after_Tail();

=1I(z) > 0. (22) Tail=last_input_partition();

Start = Head + (nm)/k —1; }
This shows howsF"* () can be obtained from the (x). Note else { /* A nonzero partition found at Hit */

if (Done == Head)

thatl.(z) can easily be obtained from any fault simulator. Based normalmode.from Head_to_Hit();

on our observation from Table | and (22) fh(x), we propose else {
the flying-state LUT approaches that take advantage of the ob- autonomous_contribution from Head _to_Done();
servation. They are discussed in the following subsections. normal_mode.from Done_to_Hit(); }
Head = Hit + 1; Done = Start + 1;
i i read_input_after_Tail();
D. Backward Zero-Checking Flying-State-LUT Approach Tail:l:’sunput_pmgion();
To effectively utilize the flying-state scheme, the input se- Start = Head + (nm)/k — 1; }

guence has to satisfy the following two conditions: 1) the input }
sequence must be sparse; 2) there is an efficient method to |d'gn
tifying the nm-bit zero runs. We have shown previously that
the error-domain inputs meet the first condition. For the second
condition, we propose backward zero-checkin(BZC) tech- points to the last input partition in the queue so that we know
nique. The idea is to find the last nonzero partition of the inpthe starting location for the next input sequence. Aldead
sequence as soon as possible (if there is one) to minimize #heays points to the first of the input partitions being processed
zero-partition checking overhead, and to reserve the maxinialthe current iteration, an8tart points to the((m/k) — 1)st
runs of contiguous zeros for the next iteration to take full advapatrtition after it.
tage of the zero runs. The procedure starts by readimgrabit If no nonzero partition betweeBtartandDoneis identified,
input sequence and storing it clockwise in a circular queue thfen the final state is obtained by (19), i.e., the flying-state ap-
2nm bits, with theHead pointer pointing to the starting posi-proach. This greatly reduces the number of table look-ups as
tion and theTail pointer to the ending position of the input secompared with the linear compaction algorithm. After that, we
guence, as shown in Fig. 5. We use fenepointer to track updateHead Tail, Start and Done for the next iteration as
the last partition to be checked—it points initiallyttead The shown in Fig. 6.
Startpointer is associated with the first partition to be checked, If, on the other hand, a nonzero partition is found, say par-
and it points initially toTail. The BZC procedure is summarizedition Hit, during the backward checking process, thénwill
in Fig. 6. be the last nonzero partition counting frétead(since the zero

In each iteration, the partitions frorStart to Done are checking process is done backward towBahe, and we can
checked backward, i.e., counterclockwise, for zero partitiorlecate it with minimal effort. The input sequence fradead
Then, BZC update$iead Tail, Start, and Doneaccording to to Hit will have to be processed by the-bit mode operation.
Fig. 6. During the backward checking process, if no nonzekénder such circumstances, there are two different cases (due to
partition is located, thetdead will be equal toDonein the the different outcomes in the previous iteration) to be consid-
next iteration. However, if a nonzero partition is found, theared.
Head will be less thanDone in the next iteration. There are The first case is when a nonzero partition was found in the
two reasons for doing it this way: 1) the checking time wilprevious iteration. In such cadepneis located afteHead and
be greatly reduced in the next iteration; 2) the partitions frothe partitions fronHeadto Donehave been checked and known
Headto Donewill be all zero partitions. Note thafail always to be zeros during the previous iteration. Then, we can evaluate

6. The backward-zero-checking (BZC) algorithm.
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Done
\/¥ Backward checking

All-zero .
partitions

Head /

n is selected. It seems that a longer stride will result in a faster
computation. However, if the stride is too long, say./k is
Start much larger thar /p;, it is then hard to find such a long run
/ of contiguous zeros. This will degrade the performance. As a
result, its speedup is dependent on the stride.

We now present a simple extension to the BZC technique
whose performance is not dependent on the stride. Consider an
nm-bit input sequence with — 1 leading zero partitions. The
signature obtained after this input sequence is

)/

£

~— o Tail

‘

nm

Fig. 7. Backward zero-checking procedure for an input sequencendbits, K nm,s nm,s
with nonzero partitions. SHnm (g = Z (Iinpi (z) > ()) @0 > So(x)
i=1
the state of partitiofdit by the autonomous response of the cur- - nm,s nm,s
rent state fronHeadto Done-1 and them-bit mode operation = Z (Iinl’f (z) > 0) ®0 > So(x). (23)

(using the memory-driven approach) frdboneto Hit. After i=h

that, the pointers are updated for the next iteration. The paftizan pe seen that the signature computation in fact starts from
tions fromHeadto Doneare now all zero, and need no checkingne first nonzero partition (partitioh in this case), i.e., the first

in the next iteration. This situation is illustrated in Fig. 7. I — 1) table look-ups are eliminated.

The second case is when no nonzero partition is found in thet,e pc approach is based on this concept. Lepttet be
previous iteration...ln this casE\),o.nc.eis equal toHead and the o leadingP partitions of the currentm-bit input sequence.
!ast nonzero partition of them-bit input sequence aftédead The PC technique checks if the pivot is zero by using the BZC
is Hit. We then have to evaluate the contribution of the partyqrithm. For a zero pivot, the signature is calculated by the
tions fromHeadto Hit by the:-bit mode operation (using the fjying_state operation as given in (23). Otherwise, the normal
memory-driven approach), and update the pointers afterwardsyit mode operation is performed from the first to the last
Again, after updating the pointers, the partitions fref@adto  onzero partitions in the pivot, which are identified by using

Doneare all zero and need no checking in the next iteration. e Bz procedure on the pivot, i.Startalways points to the
The advantages of our BZC technique can be summarized;as, partition afterHead In BZC, annm-bit input sequence is
follows. guaranteed to be retired in at most two iterations, hence the input
1) Itprovides efficient checking of them-bit nonzero input  queue is at mogtwm-bit long. However, onlyP partitions of the
sequence. The backward checking procedure can identify,-bit input sequence are guaranteed to be retired in two suc-
the maximal length of nonzero input sequence beginnirgssive iterations for PC, so an adaptive input procedure should
at Head by checking only one nonzero partition, everbe used which takes into account the available space in the input
if there are more than one nonzero partitions in the sgueue. One simple method that simplifies the fault simulator
quence. This greatly reduces the checking effort as coprocedure is to keep an input queue2efm bits in length as
pared with forward checking of all the nonzero partitionsn BZC—read a newm-bit input sequence if there is enough
2) For a nonzero input sequence, the longest train of zefpace, otherwise go to the next iteration.
partitions fromHit to Tail is reserved for later flying-state  The advantage of PC over BZC lies in its robustness, i.e., itis
operation, if possible. also good for input sequences which are nonsparse. Under such
3) Since we only need to check the input partitions frorsircumstances, PC can still gain speedup with a shorter pivot.
Startto Dong which in most cases is only a small por-This releases the strong dependence on the stride as in BZC.
tion of thenm-bit input sequence, the checking effort isThe choice of the pivot lengt® is determined by the speedup,
greatly reduced. overhead, and input sparsity. In fact, BZC can be considered as
4) It provides adaptive flying-state operation, and makesspecial case of PC witR = (nm/k).
good use ofumn-bit zero runs even if they are not read in

the samenm-bit iteration. F. DPC Flying-State-LUT Approach
The BZC technique can capture most runaof-bit zeros in
the input sequence with little effort. By using the error-domai
inputs, the flying-state technique with BZC results in a very hig
computation speed. The storage overhead of the BZC techni
includes the flying-state LUTs dfs/1)2' s-bit words and the
input queue oRnm bits.

For a highly sparse input sequence, a long pivot is desired.
n the other hand, for a not-so sparse input sequence, a shorter
ivot should be used. Since the sparsity of the input sequence
?)ends on the faults, we propose a dynamic (adaptive) scheme
which can stretch the pivot according to the sparsity of the error-
domain input sequence. ltis called the DPC approach et
) the pivot length. In the beginning? = (nm/k). During the
E. PC Flying-State-LUT Approach signature computation process, if a zero pivot is detected, then
Though the BZC technique can efficiently utilize the zero

runs of the error-domain input sequence, there are situations p— {P +1, ifP<m®

when BZC is not very effective. With BZC, a fixed stride of P, otherwise (24)
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If the pivot is nonzero, then nm-bit input polynomial in each iteration, the time complexity
) of our algorithm, including the LUT operation time and the BZC
P-1, ifP>1 ion ti i
P= : (25) operation time, is calculated as follows.
1 otherwise 1) LUT operation time:

a) Non-flying-state operation:
G. Fast Signature Computation Algorithm If there is a nonzero partitioHlit, since the parti-
tions fromHeadto Done have been checked and
known to be zero in the BZC process, only au-
tonomous responses are accumulated during this
interval. The memory-driven operations are exe-
cuted fromDoneto Hit, and the time required is

Our fast signature computation algorithm results from the
preceding speedup approaches. Keeping the memory require-
ment as small as the linear compaction algorithm, our signa-
ture computation algorithm operates on the error-domain inputs
I.(x). The algorithm is a combination of the memory-driven

approach and the flying-state approach with BZC (for practical (Done— Headk (Hit — Done+ 1)k
cases, DPC also can be used). Lopro =" Thrauwo -

Although the discussion has been made on the IE-SISR, ap- X (Tar-auto + Thi-inp + Clog) (31)
plying our algorithm to a MISR can be done by at least the fol-
lowing two different ways. where

1) Convert the MISR into an equivalent IE-SISR and then s s s
apply our algorithm to the SISR to obtain the signature LM -auto = 7PsClock + (7 - 1) PsClog T - Cebeck (32)
[17], [24].

2) Run our algorithm for each nonzero connection of the
MISR and then combine the individual signatures ac-

is the time for autonomous response accumulation
in the memory-driven approach, and

cording to the location of the nonzero connection to the m m
MISR. Trranp = (9i = D) ctonrc + [ (T = D) = 1] piciog
m — Dk
+ ———Ccheck- (33)

IV. COMPLEXITY ANALYSIS

A. Memory Complexity Note thatci,.i andcy, represent the average time
required to perform a table look-up and a logical
operation, respectively;..... represents the av-
erage time to check if a subpolynomial is zero, and
w is the word length. In generatiox > clog >

The memory space requirement of our algorithm includes the
input LUTS, state LUTS, flying-state LUTS, and input queue,
with their memory sizes denoted 4.1, Ms.1ut, M .10, @and
M;.qen, respectively. For BZC, the memory sizes in terms of

e . Cclieck-
s-bit words are, respectively, b) Flying-state operation:
N LPN If nm/k consecutive zero partitions are found,
Mg = -2 (26) . i .
k then we perform the flying-state operation on this
M = ;21 (27) nm-bit input sequence. The operation time is
S S S
Mf-lut = 721 (28) Tf-luo it 7psclook + (7 - 1) psclog- (34)
2nm
Mi-qen = — (29) 2) BZC operation time:
) ) a) Non-flying-state operation:
Using ’Ehe memory-driven approachyi,,, can be reduced by The time for the consecutive nonzero partitions is
_(s/k)z . Consequently, the total memory space of our algorithm that spent during the checking process frbone
1S to Headin the preceding iteration, i.e.,
S
M.o.a = M7 ut, + M@- ut, + M;g. ut, + M7 eu — _2k Done— Headk
rotal e 21 i 2fl i B k Tnf-check = %Ccheck- (35)
= ISk g Zgr ZU (30) , ,
k l s b) Flying-state operation:

In this casepnm/k consecutive zero partitions in

Typically, & = I. Neglecting the small overhead 8f;.qe.,, this )
the input queue have been checked, and

algorithm requires the same memory space as the linear com-
action algorithm [22], i.e Miotar = (m + $)24/1. nm
p g [ ] total ( ) / Tf-(‘,he(‘,k = ?ccheck- (36)

B. Time Complexity Let pg be the probability that them-bit input polynomial is

The BZC technique uses dynamic framing for determiningero. Assume the input partitions are statistically independent,
the maximum runs of zero partitions. Let denote the prob- then

ability that ak-bit input partition is nonzero, angd, denote
the probability that ai-bit state partition is nonzero. For every po=(1—pi)*. (37)
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In each iteration, the probability that the algorithm operates in
the flying-state mode igy. Consequently, the total iteration time

is
Tiotal = Po(Lf1u0 + Tf.check)
+ (1 — po)(Thf 1o + T focheck) (38)
where
Head< Done< Hit < Tail. (39)
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TABLE I
COMPARISON OFMEMORY COMPLEXITY AND TIME COMPLEXITY FOR THE
INPUT SEQUENCE I ()

The total iteration time is affected by the three random pointers,

which may differ from iteration to iteration. Statistically, the

mean (expectation) of the total iteration time is

Trn :E{ﬂotal}
=Po (Tf-luo + Tf—check)

Done— Head }k
+ (1 _pO) |:E{( m @} Tl\l-auto
4 E{(Hit — Done+ 1)}k
m

X (Tl\l~auto + T]\ldnp + clog)

+ E{T, f~check}:| ) (40)

Circuit [22] Memory-driven LUT | Timing-driven LUT
Time | Mem | Time Mem Time Mem
c1355 37 | 2048 18 1024 14 2048
c1908 36 2048 19 1024 20 2048
c2670 50 | 2048 | 28 1024 28 2048
¢3540 68 | 2048 | 31 1024 32 2048
c5315 | 102 | 2048 | 54 1024 52 2048
c6288 156 | 2048 76 1024 77 2048
¢7552 157 | 2048 61 1024 71 2048
TABLE I

COMPARISON OFMEMORY COMPLEXITY AND TIME COMPLEXITY FOR THE
ERRORDOMAIN INPUT SEQUENCE ()

Circuit [22] Memory-driven LUT | Timing-driven LUT
Time | Mem | Time Mem Time Mem
c1355 19 | 2048 18 1024 6 2048
c1908 19 | 2048 15 1024 8 2048
c2670 22 | 2048 | 27 1024 10 2048
¢3540 24 | 2048 [ 31 1024 14 2048
c5315 50 | 2048 | 54 1024 24 2048
c6288 67 | 2048 [ 80 1024 42 2048
c7552 74 | 2048 | 75 1024 34 2048

For anM-bit input sequence, the average total time thus is

Let L = Head- Tail be the number of partitions to be pro-

cessed in an iteration, thdn= (nm/k). AssumeDoneis uni-

formly distributed betweeindead and Tail, then we have the

probability

P{(Done— Head = =} = b

L+1 (41)

forall z, 0 < x < L. Obviously the mean i&{(Done —
Head} = L/2. Now let Ly = Tail — Done. By (39),0 <
Hit — Done < Lg. Also

. L
E{Hit — Done+ 1} = E{Ly/2} + 1= 7 +1 (42)
and
Lk
E{Tnf~c}1eck} = 5 — Ccheck- (43)
w
Therefore, we obtain
Trn IPO(Tﬁluo + Tf~check) + (1 - pO)
Lk
_T -auto
X [2m M-aut
L
Z4+1)k
+ (LL—)(TJW-autO + T]\l-inp + Clog)
Lk
+ __ccheck:| (44)
2w

Tove = TinM/B. (46)
It can be seen that a significant speedup can be achieved when
we use the error-domain inputs.

V. EXPERIMENTAL RESULTS

We use a 32-bit LFSR with characteristic polynondidl:) =
14+2® 4232 in our simulations [22]. The ISCAS-85 benchmark
circuits are used as the functional circuits under test, and the
fault model assumed is the single stuck-at fault. For each fault,
10 000 random patterns are applied. For ease of discussion, the
results shown below were taken from the sequence of the first
primary output of each functional circuit. The results are similar
if we pick a random primary output. We also assume that
32,k = 8, andl = 8. All the experiments were done on a SUN
Sparc-20/71 workstation with 256 M-byte of RAM. The time
was measured iticks (a tick is 1/60 s), and the memory space
was measured in 32-bit words.

Tables Il and Il list the experimental results for the orig-
inal inputs({(z)) and error-domain inputd. (x)), respectively.
Both the memory-driven and timing-driven approaches were
simulated. Improvement can be observed for both approaches as
compared with the linear compaction algorithm [22]. Note that
there is no performance improvement for the memory-driven
approach on the error-domain inputs (though memory space is

If it is a flying-state iterationpm bits are processed, else theeduced by half). This is because for the error-domain inputs
partitions fromHeadto Hit are processed. On the average, thiéae linear compaction algorithm also neglects as many table

number of bits processed in each iteration is
B =ponm + (1 — po) E{(Hit — Head + 1)k}

= ponm + (1 — pg) <% + 1) k. (45)

4

look-ups (for the zero input partitions) due to small so the
check time for each partition is approximately that for the as-
signment operation on the partition in the memory-driven ap-
proach. From the tables, we can see that the timing-driven ap-
proach is faster than the memory-driven approach, especially for
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TABLE IV
COMPUTATION TIME OF THE BZC PROCEDURE OVER ARANGE OF 2 (STRIDE)

1039

fast and requires small memory space. Mathematical analysis
and simulation results on ISCAS85 benchmark circuits showed
that, with the same memory requirement, this algorithm has
an order of magnitude speedup over the linear compaction
algorithm on the average. Although this algorithm was derived
for SISR, a simple method exists that converts MISR to SISR.

Circuit | n=5|{n=10(n=15{n=20{n=25|n=30|{n=35
c1355 12 7 7 7 7 7 ] 8
¢1908 8 5 5 5 5 4 5
2670 10 6 6 5 3 3 3
¢3540 16 7 10 9 6 10 11
¢5315 16 11 10 7 7 10 10
6288 26 16 15 14 6 6 7
¢7552 63 40 29 25 24 20 20
TABLE V (1
COMPUTATION TIME OF THE PC FROCEDURE OVER ARANGE OF P (PIVOT 2]
LENGTH), ASSUMINGn = 30
Circuit | P=5|P=10|P=15|{P=20| P=25| P=30 3]
¢1355 16 15 12 10 8 8
¢1908 15 15 13 10 6 6 [4]
c2670 18 14 12 10 7 4
¢3540 20 18 15 12 11 11
c5315 | 44 35 28 20 13 10 [5]
c6288 58 43 32 25 15 8
c7552 66 57 44 37 27 20 [6]

the error-domain inputs. Also, it is input-pattern independent as
expected.

Table IV lists the computation time (in terms of ticks) of our
algorithm over a range of stride. Compared with that of the g
linear compaction algorithm shown in Table Il, a great reduc-
tion in computation time can be seen—the speedup ranges fror‘[b]
about 5 to 20 folb < n < 35. Itis interesting to note that the
speedup tends to saturate (and even decay) for fargéis is
because 1) the check tinfe.,..c) dominates whemp; is very
small if we usel.(x) and the BZC technique, and 2) the spar-11
sity of I.(z) has been exploited. The memory requirement is the
same as the linear compaction algorithm. (2]

Table V shows the computation time for a rangerofpivot
length) when we use the PC technique, assumirg30. From
the table, we can see that the performance is very dependent Hg]
the value ofP. A larger P means more intermediate states will
be removed when we detect a zero pivot. Consequently, for a
sparse input sequence, a latjeshould be used. For a sparse [14]
input sequence and a fixed PC is about as good as BZC if
P =~ n.

(7]

(20]

~
~

[15]

VI. CONCLUSION [16]

We have proposed several approaches to improving the
LFSR/MISR signature computation performance. Based on thg7]
table look-up linear compaction algorithm and the modularity

. o 8]
property of SISR, new accelerating schemes—partial |npu[t1
look-up tables and flying-state look-up tables—have been de-
veloped to boost the signature computation speed. We propos&d!
two partial-input LUT methods—the memory-driven approach
and the timing-driven approach. Significant speedup also hgso]
been observed when we explore the sparsity of the error-domain
inputs. Operating on the error-domain inputs, the fIying-statqﬂ]
LUT method can significantly reduce the signature compu-
tation time with an appropriate stride which can be kept by
using the DPC technique. Our signature computation algorithr%zz]
using the memory-driven approach and the DPC technique is

Consequently, fast MISR signature computation can be done.
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